Bending and Free Vibration Analysis of Functionally Graded Plates via Optimized Non-polynomial Higher Order Theories

Authors

  • David Ramirez Faculty of Mechanical Engineering, National University of Engineering (UNI), Av. Túpac Amaru 210, Rimac, Lima, Peru
  • J.L. MANTARI Faculty of Mechanical Engineering, National University of Engineering (UNI), Av. Túpac Amaru 210, Rimac, Lima, Peru | Faculty of Mechanical Engineering, Universidad de Ingeniería y Tecnología (UTEC), Jr. Medrano Silva 165, Barranco, Lima, Peru
  • Lizbeth Cuba Department of Civil Engineering, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
  • RA Arciniega Department of Civil Engineering, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
Abstract:

Optimization concept in the context of shear deformation theories was born for the development of accurate models to study the bending problem of structures. The present study seeks to extend such an approach to the dynamic analysis of plates. A compact and unified formulation with non-polynomial shear strain shape functions (SSSFs) is employed to develop a static and free vibration analysis of simply supported functionally graded plates. In this context, three new non-polynomial displacement fields are proposed using trigonometric and hyperbolic SSSFs. Then, the non-polynomial SSSFs are optimized by varying the arguments of the trigonometric and hyperbolic functions. Additionally, the Mori-Tanaka approach is used to estimate the effective properties of the functionally graded plates. The Principle of Virtual Displacement (PVD) and the Hamilton’s Principle along with the Navier closed-form solution technique are used to obtain exact results. The obtained numerical results are in a good agreement with 3D and 2D higher order shear deformation theory solutions available in the literature.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Free vibration analysis of functionally graded rectangular plates via differential quadrature method

In this study, free vibration of functionally graded rectangular plates for various types of boundary conditions has been presented . The properties of the plate are assumed as power- law form along the thickness direction , while poisson's ratio is kept constant. the linear vibration equations of functionally graded rectangular plates are derived based on first order shear deformation theory b...

full text

Free Vibration Analysis of Functionally Graded Materials Non-uniform Beams

In this article, nonuniformity effects on free vibration analysis of functionally graded beams is discussed. variation in material properties is modeled after Powerlaw and exponential models and the non-uniformity is assumed to be exponentially varying in the width along the beams with constant thickness. Analytical solution is achieved for free vibration with simply supported conditions. It is...

full text

Vibration and Static Analysis of Functionally Graded Porous Plates

This research deals with free vibration and static bending of a simply supported functionally graded (FG) plate with the porosity effect. Material properties of the plate which are related to its change are position-dependent. Governing equations of the FG plate are obtained by using the Hamilton’s principle within first-order shear deformation plate theory. In solving the problem, the Navier s...

full text

On Static Bending, Elastic Buckling and Free Vibration Analysis of Symmetric Functionally Graded Sandwich Beams

This article presents Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of symmetric functionally graded (FG) sandwich beams using a hyperbolic shear deformation theory. The beam has FG skins and isotropic core. Material properties of FG skins are varied through the thickness according to the power law distribution. The present theory accounts fo...

full text

Vibration Analysis of Functionally Graded Spinning Cylindrical Shells Using Higher Order Shear Deformation Theory

In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...

full text

Free Vibration Analysis of Functionally Graded Beams with Cracks

This study introduces the free vibration analysis of multilayered symmetric sandwich Timoshenko beams, made of functionally graded materials with two edge cracked, using the finite element method and linear elastic fracture mechanic theory. The FG beam consists of 50 layers, located symmetrically to the neutral plane, whose material properties distribution change along the beam thickness, accor...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  281- 298

publication date 2019-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023